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Abstract
In image-based measurements, quantitative image data must be mapped to three-

dimensional object space.  Analytical photogrammetric methods, which may be used to
accomplish this task, are discussed from the viewpoint of experimental fluid dynamicists.  The
Direct Linear Transformation (DLT) for camera calibration, used in pressure sensitive paint, is
summarized.  An optimization method for camera calibration is developed that can be used to
determine the camera calibration parameters, including those describing lens distortion, from a
single image.  Combined with the DLT method, this method allows a rapid and comprehensive
in-situ camera calibration and therefore is particularly useful for quantitative flow visualization
and other measurements such as model attitude and deformation in production wind tunnels.
The paper also includes a brief description of typical photogrammetric applications to
temperature- and pressure-sensitive paint measurements and model deformation measurements
in wind tunnels.
1.  Introduction

Flow visualizations and videometric (or video photogrammetric) measurements produce
data in the form of images.  In general, an image is the result of a perspective projection of a
three-dimensional object to two dimensions.  In contrast to “qualitative” flow visualization
methods, “quantitative” techniques seek to extract numerical data from images.  In many
instances, the precise location of a point in three-dimensional space is required, in addition to
the value of some quantity at that location.  When the rendered object is significantly three-
dimensional, simple image processing schemes, such as polynomial warping, may not be
sufficient.  In general, photogrammetric methods can be used to determine the relationship
between three-dimensional object coordinates and corresponding two-dimensional image
coordinates [1-3].  This field was originally developed to determine topography using aerial
photography with metric cameras.  Due largely to the rapid development of CCD video
cameras and computer, photogrammetric methods using these techniques have been applied
recently to numerous non-topographic applications.  However, photogrammetric techniques,
while not in general widespread use in wind tunnel tests, have been used recently for luminescent
paint and model deformation measurements.  Donovan et al. [4], Bell and McLachlan [5], and
Le Sant and Merienne [6] have described the application of these methods to luminescent paint
imaging.  In addition, photogrammetric measurements of model deformation in wind tunnels
have been reviewed by Burner et al. [7] and Liu et al. [8].  Perhaps because of the difficulties
associated with using the terminology of a different discipline, the application of non-topographic
photogrammetry to quantitative flow visualization, while straightforward conceptually and quite
useful, may be filled with pitfalls.  In this paper, an optimization method for rapid and
comprehensive camera calibration is developed that is particularly suitable to photogrammetric
applications for wind tunnel testing since productivity is not negatively impacted.  In addition,
results of applying photogrammetry to temperature- and pressure-sensitive paints (TSP and
PSP) and model deformation measurements are presented.
2. Collinearity Equations

Image-based measurement techniques extract data from two-dimensional (2D) images
and map them into three-dimensional (3D) object space.  Photogrammetry provides a
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relationship between 3D coordinates in object space and corresponding 2D coordinates in
images [1-3].  The fundamental problem is to determine object space coordinates )ZY,X,(
given the corresponding image coordinates y)(x, .  Figure 1 illustrates the camera imaging
process.  The lens of the camera is modeled by a single point known as the perspective center,
the location of which in object space is ( , , )X Y Zc c c .  Likewise, the orientation of the camera is

characterized by three Euler orientation angles.  The orientation angles and location of the
perspective center are referred to in photogrammetry as the exterior orientation parameters.
The object point, perspective center and image point lie along a straight line for a “perfect”
camera.  This relationship is described by the collinearity equations, the fundamental equations
of photogrammetry.  On the other hand, the relationship between the perspective center and the
image coordinate system is defined by the camera interior orientation parameters, namely, the
camera principal distance c and the photogrammetric principal-point location )y,x( pp .  The

principal distance, which equals the camera focal length for a camera focused at infinity, is the
perpendicular distance from the perspective center to the image plane, whereas the
photogrammetric principal-point is where a perpendicular line from the perspective center
intersects the image plane.  Due to lens distortion, however, perturbations to the imaging
process lead to departures from collinearity that can be represented by the shifts dx and dy of
the image point from its “ideal” position on the image plane.  The shifts dx and dy are modeled
and characterized by a number of lens distortion parameters.

In photogrammetric applications for wind tunnel testing, high contrast fiducial targets are
usually placed on a model surface to determine the relationship between image and object space
coordinates.  The image and object space coordinates of the targets are related by the
collinearity condition in which the image vector is aligned with the vector from the perspective
center to the object point
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where M is the rotation matrix, λ is a scale factor, and pn n n
T= (x , y )  and Pn n n n

T= (X , Y , Z )

are the image and object space coordinates of the nth target, respectively.  Algebraic
manipulation of (1) yields the well-known collinearity equations (with the distortion terms dx and
dy) relating the nth target location in object space to the corresponding point on image plane,
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where mij (i, j = 1, 2, 3) are the elements of the rotation matrix M that are functions of the Euler
orientation angles ( , , )ω φ κ ,
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The orientation angles ( , , )ω φ κ  are essentially the pitch, yaw, and roll angles of the camera in
the established coordinate system.  The terms dx and dy are the image coordinate shifts induced
by lens distortion.  The lens distortion terms can be modeled by the sum of the radial distortion
and decentering distortion [9, 10]

d x d x d xr d= +  and d y d y d yr d= + , (4)

where, assuming the optical axis of the lens is perpendicular to the image plane
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Here, K1 and K2 are the radial distortion parameters, P1 and P2 are the decentering distortion
parameters, and x’ and y’ are the undistorted coordinates in image.  When the lens distortion is
small, the unknown undistorted coordinates can be approximated by the known distorted
coordinates, i.e., nn x'x ≈  and nn y'y ≈ .  For large distortion, iterative procedures can be

employed to determine the appropriate undistorted coordinates to improve the accuracy of the
estimate.  The following iterative relations are used: n

0
n x)'x( =  and n
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nn += , where

the superscripted iteration index is k = 0 1 2, , L .
The collinearity equations (2) contain the camera parameters to be determined by

calibration.  The parameter sets ( , , , , , )ω φ κ X Y Zc c c , (c, x , y )p p , and )P,P,K,(K 2121  in

(2) are the exterior orientation, interior orientation, and lens distortion parameters of a camera
respectively.  Analytical camera calibration techniques utilize the collinearity equations and
distortion terms to determine these camera parameters [11, 12].  Since Eq. (2) is non-linear,
iterative methods of least squares estimation have been used as a standard technique for the
solution of the collinearity equations in photogrammetry [1-3].  However, direct recovery of the



5

interior orientation parameters is often impeded by inversion of a nearly singular normal-
equation-matrix of the least-squares problem.  The singularity of the normal-equation-matrix
mainly results from strong correlation between the exterior and interior orientation parameters.

In order to reduce the correlation between these parameters and enhance the
determinability of (c, x , y )p p , the use of multiple camera stations, varying image scales,

different camera roll angles and a well-distributed target field in three dimensions has been
suggested by Fraser [9, 13].  Nevertheless, the multiple-station, multiple-image method for
camera calibration is not easy to use in wind tunnels where only a limited number of windows
are available for cameras and the positions of cameras are fixed.  Thus, a single-image method
of on-the-job camera calibration is desirable.  The optimization method described in section 4 is
a single-image, automatic camera calibration method that eliminates the singularity problem.
3. Direct Linear Transformation

The Direct Linear Transformation (DLT), originally proposed by Abdel-Aziz and Karara
[14], can be very useful for determining initial values of the parameters.  The DLT equations can
be obtained by simply rearranging and combining terms of the collinearity equations, i.e.,

0)1ZLYLXL)(ydy(LZLYLXL

0)1ZLYLXL)(xdx(LZLYLXL

n11n10n9n8n7n6n5

n11n10n9n4n3n2n1

=++++−+++
=++++−+++

. (6)

The DLT parameters 111 L,L L  are related to the camera exterior and interior orientation
parameters ( , , , , , )ω φ κ X Y Zc c c  and (c, x , y )p p  [1].  Unlike the standard collinearity

equations (2), the DLT equations (6) are linear for the DLT parameters when the lens distortion
terms dx and dy are neglected.  The matrix form of the linear DLT equations for M targets is

CLB = , where T
111 )L,L( L=L , T

MM11 )y,x,y,x( L=C , and B is the 2M×11
configuration matrix that can be directly obtained from Eq. (6) (see reference 15).  A least-
squares solution for L (without requiring an initial guess) is formally given by

CBB)(B=L T1T − .
The DLT method is widely used in both non-topographic photogrammetry and machine

vision because of its simplicity.  It is also used for pressure sensitive paint measurements [5].
When dx and dy cannot be ignored, however, iterative solution methods are still needed and the
DLT method loses its simplicity.  In general, the DLT method can be used to obtain fairly good
values of the exterior orientation parameter and the principal distance, although it gives poor
estimations of the principal-point location (x , y )p p  [15].  However, the DLT method is very

useful since initial approximations can be found for other methods such as the optimization
method described below that can be used for a more comprehensive calibration.
4. Optimization Method

In order to develop a simple and robust method for camera calibration, the singularity
problem must be dealt with when solving the collinearity equations.  An optimization method is
proposed based on the following insight.  A strong correlation between the interior and exterior
orientation parameters leads to a singularity of the normal-equation-matrix in the least-squares
problem for the full set of the camera parameters.  Therefore, to eliminate the singularity, the
least-squares estimation is used only for the exterior orientation parameters, while the interior
orientation and lens distortion parameters are calculated separately using an optimization
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method.  The optimization method contains two separate, but interacting procedures: resection
for the exterior orientation parameters and optimization for the interior orientation and lens
distortion parameters.
4.1 Resection for the exterior orientation parameters

When the image coordinates )y,(x nn  are in pixels, the collinearity equations (2) are

expressed as

0W/VcydyySf

0W/UcxdxxSf

pnv2

pnh1

=++−=

=++−=
, (7)

where Sh and Sv are the horizontal and vertical pixel spacings (mm/pixel) of a CCD camera,
respectively.  In general, the vertical pixel spacing is fixed and known for a CCD camera, but
the effective horizontal spacing may be variable depending on the frame grabber used to digitize
the image.  Thus, an additional parameter, the pixel-spacing-aspect-ratio S Sh v/ , is introduced.

We define T
ccc )Z,Y,Xê,ö,ù,(=exÐ  for exterior orientation parameters and

T
vh2121pp )S/S ,P,P,K,K,y,x(c,=inÐ  for the interior orientation and lens distortion

parameters.  For given values of inÐ , and sets of pn n n
T= (x , y )  and Pn n n n

T= (X , Y , Z ) ,

exÐ  in Eq. (7) can be found by an iterative least-squares solution, referred to in

photogrammetry as “resection”.  The linearized collinearity equations for targets (n = 1, 2, L,
M) are written as l)ÄÐ(ÁV ex −== , where exÄÐ  is the correction term for the exterior

orientation parameters, V is the 2M×1 residual vector, A is the 2M×6 configuration matrix, and
l is the 2M×1 observation vector.  The elements of A and l are presented in the Appendix.  A
least-squares solution to minimize the residuals V for the correction term is

lAA)(A=ÄÐ T1T
ex

− .  In general, the 6 6×  normal-equation-matrix )( AAT  can be inverted

without singularity since the interior orientation and lens distortion parameters are not included in
the least-squares estimation.  To obtain such exÐ  that the correction term becomes zero, the

Newton-Raphson iterative method is used for solving the non-linear equation
0lAA)(A T1T =−  for exÐ .  This approach converges over considerable ranges of the initial

values of exÐ .

Therefore, for a given inÐ , the corresponding exterior orientation parameter exÐ  can be

obtained and are symbolically expressed as
)ÐRESECTION(Ð inex = . (8)

At this stage, the exterior orientation parameters exÐ  obtained from (8) are not necessarily

correct unless the given interior orientation and lens distortion parameters inÐ  are accurate.

Obviously, an extra condition is needed to obtain correct inÐ  and the determination of inÐ  is

coupled with the resection for exÐ .  The following section describes an optimization problem

to obtain the correct inÐ .

4.2 Optimization for the interior orientation and lens distortion parameters
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In order to determine the correct values of inÐ , an extra condition must be given.  We

note that the correct values of inÐ  are intrinsic constants of a camera/lens system, and they are

independent of the target locations pn n n
T= (x , y )  and Pn n n n

T= (X , Y , Z ) .  Mathematically,

inÐ  is an invariant under a transformation ( , ) ( , )p P p Pn n m ma  ( m n≠ ).  By rearranging

the collinearity equations with distortion terms, inÐ  can be expressed in the following form
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Therefore, for correct values of inÐ , the quantity )( exinnn ÐÐ,P,pG ,,  is an invariant under

the transformation ( , ) ( , )p P p Pn n m ma  ( m n≠ ).  In other words, for correct values of

inÐ , the standard deviation of )( exinnn ÐÐ,P,pG ,,  calculated over all targets should be

zero, i.e., 0GGstd(G) =−><−= ∑
=

1/2
M

1n

2 )1M/()( ][ , where std denotes the standard

deviation and >< G  denotes the mean value.  Furthermore, since std(G) 0≥  is always valid,
the correct inÐ  must correspond to the global minimum point of the function std(G) .  Hence,

the determination of correct inÐ  becomes an optimization problem to seek values of inÐ  that

minimize the objective function std(G), i.e., std(G) → min .  To solve this multiple-dimensional
optimization problem, the sequential golden section search technique is used because of its
robustness and simplicity [16].  Since the quantity )( exinnn ÐÐ,P,pG ,,  is related to exÐ ,

the optimization for ΠΠ in  is coupled with the resection for exÐ .  Other appropriate objective

functions may also be used.  An obvious choice is the root-mean-square (rms) of the residuals
of calculated object space coordinates of all targets.  In fact, we find that the use of std x p( )  or

std y p( )  in optimization is qualitatively equivalent to the use of the rms of the residuals.

In principle, any component of std(G) = [ ( ), ( ), ( )]std c std x std yp p
T  can be used as an

objective function since minimizing one of three components simultaneously leads to minimization
of other components.  As will be shown, std x p( )  and std y p( )  have a simpler topological

structure near the global minimum point than )c(std .  Hence, std x p( )  and std y p( )  are more

appropriate objective functions for optimization.  For example, consider a simulated 3D field of
targets on a step configuration shown in Fig. 2.  A typical topological structure of std x p( )  is

shown in Fig. 3 near the global minimum point (c, x , y ) = (28, 0.2, 0.08)p p  mm for simulated

image of the target field.  Clearly, near the global minima 0)x(std p = , std x p( )  exhibits a

single “valley” structure such that the optimization problem is well defined.  The function
std y p( )  has a similar topological structure in the parametric space.
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Generally, the topological structure of std x p( )  or std y p( )  depends on three-

dimensionality of the target field.  For the step target field, the step height H characterizes the
three-dimensionality.  Figure 4 shows the topological structures of std x p( )  for H = 6 and 2

inches.  Note that the two surfaces are partially in contact.  Evidently, stronger three-
dimensionality of the target field with a larger H produces a steeper “valley” in topology.  From
the standpoint of optimization, stronger three-dimensionality leads to faster convergence.  Figure
5 shows typical convergence processes of the principal distance for three different step heights.
Other camera parameters have similar convergence behavior.  Clearly, strong three-
dimensionality of the target field improves convergence rates.  For a planar field of targets
(H = 0) , the optimization method does not generally converge to the true values.  Hence, the
optimization method requires a 3D target field.

The topological structure of std x p( )  or std y p( )  can also be affected by random

disturbances on the targets.  To simulate this effect, the target coordinates in the image are
disturbed by mathematically adding a zero-mean random disturbance with a Gaussian
distribution.  Figure 6 shows the topological structures of std x p( )  at disturbance levels of

ìm1  and ìm6  (these disturbance levels correspond to 0.08 and 0.46 pixels for a typical
CCD video camera system).  The flattening of the sharp “valley” near the minimum point implies
that noise in the image leads to a slower convergence rate and produces larger errors in the
optimization computations.  Figure 7 shows typical errors of the interior orientation parameters
(c, x , y )p p  as functions of the disturbance level, where the correct simulated values of

(c, x , y )p p  are (28, 0.2, 0.08) (mm).  For a typical CCD video camera, for example, the

random error in the target centroid measurement is usually less than 0.3 µm (0.023 pixels).
Thus, the corresponding predicted precision error in the estimated values of (c, x , y )p p  by the

optimization method is no more than 0.02 mm.
The optimization method still requires appropriate initial values to obtain a converged

solution even though its convergence ranges of the initial values are quite large.  The DLT can
provide initial approximate values of the exterior orientation parameters )Z,Y,X,êö,ù,( ccc

and the principal distance c , where the domain of )êö,ù,(  is defined as − ≤ ≤180 1800 0ω ,

− ≤ ≤90 900 0φ  and − ≤ ≤180 1800 0κ .  Using the initial approximations given by the DLT,
the optimization method gives more accurate estimates of the camera orientation and lens
distortion parameters.  The standard optimization technique such as the golden section search
method can be used to minimize the objective function std x p( )  in the parametric space

(c, x , y ,K ,K ,P ,P , )p p 1 2 1 2 S Sh v/ .  Combined with the DLT, the optimization method allows

a rapid and comprehensive automatic camera calibration to obtain 14 camera parameters from
a single image without requiring a guess of the initial values.
4.3 Laboratory calibrations

Camera calibrations for an Hitachi CCD camera with a Sony zoom lens (12.5 to 75 mm
focal length) and an 8 mm Cosmicar television lens were made in the laboratory in order to
evaluate the accuracy of the optimization method.  The measurement system consisted of a
CCD camera, a personal computer with a Matrox Pulsar frame-grabber board, a step target
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plate, and software.  A novel target-tracking program developed by High Technology
Corporation was used to track targets and compute target centroids [8].  The CCD array size
of the Hitachi camera was 8mm by 6mm.  The digitized image size was 640 by 480 pixels with
vertical and horizontal pixel spacings equal to 13.0 µm and 12.9 µm, respectively.  The random
error in the measurement of target centroids was less than 0.3 µm (0.023 pixels).  The 3D
target field for camera calibration was provided by a three-step target plate with 54 circular
retro-reflective targets of 0.5 in diameter, a 2.0 in step height H and 2.0 in spacing between
neighboring targets (Figure 8).  The coordinates of the targets on the plate were measured a
priori with a three-dimensional coordinate machine with an accuracy of 0.001 inch.

For comparison, optical techniques described by Burner et al. [17, 18] were also used
for calibration.  The laser-illuminated, displaced-reticle technique was used to determine the
horizontal and vertical pixel spacing.  The principal-point location was found by the
unexpanded, laser-illumination technique, and the lens distortion parameters were determined
from images of a calibration plate suitably aligned with the camera axis.  Figure 9 shows the
principal distance given by the optimization method versus zoom setting for the Sony zoom lens.
Figures 10 shows the principal-point location and radial distortion coefficient K1 as a function of
the principal distance for the Sony zoom lens.  The error bars in the principal-point location are
determined based on replication calibration data using the optimization method collected at
different camera roll angles and positions over two days.  The results obtained by the
optimization method are in reasonable agreement with those given by Burner [18] for the same
lens.  The optimization method was also used to calibrate the Hitachi CCD camera with an 8
mm Cosmicar television lens.  Table 1 lists the interior orientation and lens distortion parameters
obtained by the optimization method that are consistent with those obtained by the optical
techniques.  The accuracy of camera calibration is usually represented by the residual of the
image coordinate calculation.  Typically, the optimization method has a residual of one micron or
less in the image plane for an 8mm by 6mm CCD array, depending on the accuracy of the
coordinates of the target plate.
5. Applications

Photogrammetry is required in image-based measurement techniques that seek to extract
data from 2D images and map them to 3D object space.  Some typical applications of
photogrammetry to temperature- and pressure-sensitive paints and model deformation
measurements are described.  Photogrammetry is also useful for other global flow visualization
and measurement techniques such as particle tracking velocimetry and particle image
velocimetry [19, 20].
5.1 Temperature- and pressure-sensitive paints

Temperature- and pressure-sensitive paints (TSP and PSP) are global techniques for
surface temperature and pressure measurements [21, 22].  Photogrammetry is an important
element of the data reduction process since TSP and PSP data in images must be mapped onto
a model surface in 3D object space.  Donovan et al. [4], Bell and McLachlan [5], and Le Sant
and Merienne [6] have described PSP mapping using photogrammetry.  In applications of
photogrammetry to TSP and PSP, the collinearity equations are used for mapping after the
camera is calibrated.  Known object space coordinates )ZY,X,(  are mapped into unknown
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image coordinates y)(x, , and then TSP and PSP data at the image points are associated with
the corresponding points in object space.  Here, a photogrammetric application to boundary
layer transition detection on a three-dimensional model is presented.  A TSP system has been
developed for the purpose of transition detection and applied to several three-dimensional
models over a wide speed range [23].  TSP detects transition by visualizing the temperature
change caused by different heat transfer rates in laminar and turbulent flow regimes in a transient
thermal process.  A key element of the system development has been photogrammetric tools for
mapping temperature to a three-dimensional grid of the model surface.  Figure 11 shows a
transition image of a swept-wing model in Mach 3.5 flow mapped onto the half of the model
surface grid by using photogrammetry.  The bright region corresponds to the turbulent boundary
layer where the heat transfer rate is higher than that in the laminar boundary layer.  The onset of
transition is demarcated in the image as a bright parabolic band on the wing where the cross-
flow instability mechanism dominates the transition process.  However, no transition is observed
near the centerline of the model.  This is because near the symmetric plane of the model the
stability is dominated by the Tollmien-Schlichting instability mechanism that is weaker than the
cross-flow instability mechanism.  Detailed experimental and computational studies of transition
physics on the swept-wing model at Mach 3.5 are described in references 23, 24 and 25.
5.2 Model deformation measurement

Model deformation data are required to understand the aeroelastic properties of a model
and correctly interpret measured aerodynamic data for a deformed model.  An optical
measurement technique is the videogrammetric model deformation (VMD) method.  In contrast
to the applications to TSP and PSP, the collinearity equations are used in a VMD system to
determine spatial coordinates of targets on a model surface from target centroids in the image
plane in order to compute model deformation (twist and bending) produced by aerodynamic
loads.  Burner et al. [7] and Liu et al. [8] have described in detail the VMD systems used in
NASA facilities, including cameras, lights, targets, image acquisition, and software for data
reduction.  Here, an example is presented of a model deformation measurement using a single-
camera VMD system for a 72in semi-span high-lift model in the NASA Ames 12-Ft pressure
tunnel.  Mach number ranged from 0.23 to 0.3, dynamic pressure ranged from 140 to 330 psf,
Reynolds number ranged from 2.9 to 6.73 million per foot, and angle-of-attack ranged from -6
to 23 degrees.  Figure 12(a) shows the wing twist as a function of the angle-of-attack (AOA) at
different spanwise locations.  The magnitude of twist increases with AOA until aerodynamic stall
occurs roughly at an AOA of 15 degrees.  Figure 12(b) shows the bending of the wing at
different AOAs.  Dynamic deformation measurements were also made in the laboratory on a
rectangular wing with a 44 in span and a 24 in chord driven by a mechanical shaker at the wing
tip.  Figure 13 shows dynamic AOAs at 86% span for shaker frequencies of 5 Hz and 12 Hz.
The accuracy of the AOA measurements using the VMD system has been determined by
comparing with a high accuracy rotational stage (1 arcsecond).  The absolute errors in time-
average AOA measurements by the VMD systems were found to vary from a few thousandths
to a few hundredths of a degree over a 40o range, depending on the position and orientation of
the camera.
6. Conclusions
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Photogrammetry is an essential ingredient of many image-based measurement techniques
for wind tunnel testing.  One problem in photogrammetry is the camera calibration, which
determines the camera exterior and interior orientation parameters and lens distortion
parameters.  Photogrammetric applications in wind tunnels require a rapid single-station, single-
image camera calibration method to maintain productivity.  The optimization method developed
in this paper enables camera calibration from a single image and does not suffer from a
mathematical singularity problem.  Combined with the DLT method to provide an appropriate
initial guess, the method allows rapid automatic camera calibration.  Laboratory experiments
indicate that the optimization method compares favorably with proven optical techniques.  The
method has been successfully applied to temperature- and pressure-sensitive paints and model
deformation measurements.
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four reviewers for their helpful comments.
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Appendix: Configuration Matrix and Observation Vector
The configuration matrix A and observation vector l in the linearized collinearity equations
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Figure 1. Camera imaging process and the interior orientation parameters.
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(a)

(b)

Figure 3. Topology of the objective function near the minimum point
(c, xp, yp) = (28, 0.2, 0.08) (mm).



17

Figure 4. Effect of three-dimensionality (step height H) on topology of
the objective function near the minimum point.

(a) H = 6 in, (b) H = 2 in.
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Figure 5. Effect of three-dimensionality (step height H) on convergence
of the optimization solution.
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Figure 6. Effect of disturbance in image plane on topology of
the objective function near the minimum point.

(a) disturbance level of 6 µm; (b) disturbance level of 1 µm.
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Figure 8. Step calibration target plate.
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Figure 11. Result of photogrammetric mapping of transition image data to a half of the CFD grid
of a swept-wing model at Mach 3.5.
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